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ABSTRACT
The benefits of using mobile sinks or data mules for data col-
lection in Wireless Sensor Network (WSN) have been stud-
ied in several works. In this paper, we consider a drone
with hovering capability as a mobile sink for data collec-
tion. Drones, however, have limited power supply that re-
stricts their flying time. Hence, in addition to the WSN’s
energy cost, the energy cost of the drone itself must be also
considered in order to increase the amount of collected data
from the WSN. We investigate the problem of determining
the best drone tour for data collection in a WSN, i.e., we fo-
cus on minimizing the overall drone time, that is the drone
flying time plus the time needed to collect data from all
WSN nodes. We propose two heuristic algorithms to solve
this problem. Our experimental results have shown that the
proposed heuristics provide performance close to the opti-
mal one in small WSN instances and performance superior
to naive strategies in larger instances (where optimal solu-
tion is computationally expensive).
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Wireless Sensor Network (WSN) is a computer network com-
posed by typically small nodes having a processor, small
memory storage, a set of sensor to collect data, a short range
radio for wireless communications and a battery that pro-
vides limited autonomy. Usually, the collected data is for-
warded through multi-hop routes to a special node, the base
station or sink, which typically has no severe limitations
such as the other nodes and serves as the interface between
the WSN and the user [1]. WSNs using a unique static sink
have an early network disconnection time since the nodes
located close to the sink deplete their battery quicker than
other nodes. This is due to the fact that all data must be for-
warded through these nodes to reach the sink. When using
a mobile sink, on the other hand, the energy consumption
is distributed among other nodes in the WSN, avoiding pre-
mature disconnections. Mobile sinks go to the vicinity of
different sets of sensor nodes, varying the nodes in its neigh-
borhood. The literature presents several works that consider
mobile sinks in order to increase the network lifetime, e.g. [2,
3, 4, 5]. However, they focus on the limitations of the WSN
and do not consider limitations of the mobile sink itself.

Unmanned Aerial Vehicles1 (UAVs), in particular helicopter-
like ones, can be used to fly over an WSN and function as
a mobile sink for data collection. Nevertheless, UAVs have
a limited flying time that must be considered, i.e., using an
UAV as a mobile sink within a WSN adds to the complexity
of the WSN’s operation.

We consider a WSN with the following characteristics: (1) it
monitors a square area, (2) inside this area there exists a fi-
nite set of 2D points P = {p1, p2, ..., p|P |} forming a grid that
define the possible drone positions (PDP), (3) an initial point
p0 where the drone has to start and finish its trip is given
and (4) a set of known sensor node N = {n1, n2, ..., n|S|} is
randomly deployed in this area. The nodes in N periodically
collect data about this area, storing it in their flash memory.
Each node has a radio for data transmission with r meters of
range and can form a multi-hop WSN. All sensor nodes also
have the same amount of data in their memory (M bytes).
We assume a drone as the mobile sink of the WSN which
is capable of flying and hovering over the WSN. Finally, as-
suming the task at hand is to collect all the data from all
the WSN nodes, the problem we consider is to find the Best
Drone Tour Plan (BDTP), i.e., to find (1) a sequence of

1https://en.wikipedia.org/wiki/Unmanned aerial vehicle
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C collecting points ci ∈ P where the drone will hover for col-
lecting data and (2) C disjoint sets of nodes Si ⊆ N , where
all nodes in Si will transmit their data to the drone hovering
at the collecting point ci and

⋃C
k=1 Sk = N , so that the to-

tal time needed to fly from p0 over the collecting points and
return to p0 (Ttrip) plus the time to collect all data from the
WSN (Tcollecting), which we denote as TBDTP , is minimized.

There are two obvious solutions to this problem: (1) having
the drone fly to a single collecting point with all nodes in
N sending their data to the drone at that point through a
possibly long multi-hop path, or (2) having the drone fly
over several (possibly all) collecting points so that all nodes
neighboring the collecting points can send their data to the
drone via a single-hop data route. The former minimizes
Ttrip at the expense of Tcollecting, whereas the latter does
the opposite. Our main goal is to investigate where in be-
tween those obvious solutions lies the best (ideally optimal)
compromise.

Finding the BDTP is in the class of the NP-complete2, thus
we propose two heuristics to reduce the drone overall time.
The first heuristic uses an incremental strategy, in which
each interaction adds a new drone position in the result.
The second heuristic uses the opposite strategy, from a set
of possible drone positions, it eliminates one by one to find
the best set. Experiments in small scale showed that incre-
mental strategy presented overall time similar to the optimal
solution. Moreover, in larger scenarios, both heuristics pre-
sented very similar performance which was superior to naive
strategies.

The remainder of this paper is organized as follows. Next,
some related works are reviewed. Section 3 describes how to
model the problem as graphs and presents three algorithm
to solve it. Section 4 presents the simulation results. Finally,
Section 5 presents our conclusions and future works.

2. RELATED WORKS
In most of the researches about mobile sink in WSN, the goal
is to increase the network lifetime finding the best sink tour.
Luo et al. [2] were the first to propose the sink mobility.
They analyzed the best mobility pattern and data routing
strategy to extend the network lifetime. However, they only
considered the sink moving constantly. Wu et al. [6] pro-
posed a cluster-based genetic algorithm to define clusters in
order to reduce the sink trip time. Ma et al. [7] considered
a set of robots working as data mules for WSNs. Almi’ani et
al. [8] assumed that the time between two data collections
in a same node cannot be larger than a predefined limit.
Notably, all of these researches considered only single-hop
data transmissions. Rault et al. [5] and Keskin et al. [4]
did consider a multi-hop scenario but focused on the WSN
resource only, i.e., they did not consider resource limitations
on the mobile sink itself. Finally, Shi et al. [3] focus in
a theoretical approach to prove that a time-dependent sink
movement problem and flow routing problem can be trans-
formed into a location-dependent problem. However, they
did not consider the sink travel time between any two points
in their approach. Consequently, the length of the sequence

2This can be proved by a reduction of the Set-covering prob-
lem.

Figure 1: Example of WSN and the correspondent CG.

of points forming the sink path on the monitored area did
not influence the final result.

Unlike these works we consider that the mobile sink (drone)
itself has limited resources and therefore its use must be
carefully planned, otherwise one risks extending the WSN
lifetime but not being able to collect the data it gathered.

3. FINDING THE BDTP
We model the BDTP problem using two graphs. The first
graph is called Trip Grap (TG) and is used to calculate Ttrip.
We define it as TG = {W,F}, such that W is a set of ver-
tices representing the PDPs in P and F a set of edges rep-
resenting the shortest trip between each pair of PDPs. The
weights of these edges represent the Euclidean distance be-
tween two PDPs. The second graph is called Connectivity
Grap (CG) and is used to calculate Tcollecting. It is defined
as CG = {V,E}, such that the vertices V represent the sen-
sor nodes and PDPs (V = P ∪ N). The set of edges E
represents possible communication paths between the drone
over every PDP in P and all sensor nodes. The weights
of these edges represent the distance in hops between each
sensor node and the drone over each PDP. There are no
edges between vertices representing sensor nodes. Figure
1(A) presents an example of a WSN and a set of PDPs.
It also shows the possible direct communications between
two sensor nodes and between the drone over each PDP and
the sensor nodes. Figure 1(B) shows the corresponding CG
graph and the weights of each edge representing the distance
in hops between PDPs and sensor nodes.

Having defined those graphs we can now present three algo-
rithms to find the BDTP, one guaranteed to find the optimal
solution (but only applicable to small instances of the prob-
lem) and two heuristic ones.

3.1 Brute Force Algorithm for The Optimal
Solution

The Brute Force algorithm finds the optimal solution for the
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BDTP problem. It calculates Tcollection and Ttrip for each
possible subset Ri of P , in order to find which Ri provides
the smallest TBDTP . Algorithm 1 presents the pseudo code.
It receives as parameter the sets N and P , the amount of
data in each sensor node (M), the network bandwidth (B)
and the drone speed (dspeed). In every loop iteration, i.e.,
for every different Ri, the algorithm calculates Tcollecting,
Ttrip , sums them to find TBDTP and verifies if it is the
smallest. Finally, it shows the result, which is composed by
bestroute (the sequence of C PDPs where the drone has to
hover over) and bestst (a graph where each edge represent
a data route from a sensor node to a drone over a specific
PDP).

Tcollecting is calculated in two steps. First, the algorithm
calls the function SpanningTree() (line 9) to create st and
then it calls the function CTime() (line 10) to calculate
Tcollecting. The graph st ⊆ CG is composed by the vertices
in Ri, vertices representing all sensor nodes and only one
edge connecting each sensor node to a PDP. Every edge in
st represents the shortest path (in hops) for each sensor node
to send its data to drone hovering over one of the PDPs in
Ri. CTime() calculates Tcollecting adding all weights of the
edges in st and multiplying it by the time necessary for one
node to transmit all its data over one hop, i.e., t = M

B
.

When st has a vertex representing a sensor node with no
edge, CTime() will set Tcollecting = ∞, which means the
drone over the PDPs in Ri cannot receive data from all
sensor nodes.

To calculate Ttrip, Algorithm 1 first calls the function TSP ()
(line 11) to create the best route and then the function
CTime()(line 12). The function TSP () solves the Trav-
eling Salesperson Problem [9], using Ri. Here, we consider
that the initial point p0 = (0, 0) and the drone has constant
speed informed by the user (dspeed). The function CTime()
calculate Ttrip dividing the best tour length by dspeed.

Algorithm 1 Brute Force Algorithm.

1: procedure BRUTE FORCE(N,P,M,B, dspeed)
2: besttime ←− ∞
3: bestroute ←− �
4: bestst ←− �
5: route ←− �
6: CG ←− CreateCG(N,P )
7: TG ←− CreateTG(P )
8: for each Ri ⊆ P do
9: st ←− SpanningTree(Ri, CG)
10: Tcolleecting ←− CTime(st,M)
11: route ←− TSP (Ri, TG)
12: Ttrip ←− CTime(route, TG, dspeed)
13: TBDTP ←− Tcollecting + Ttrip

14: if TBDTP < besttime then
15: besttime ←− TBDTP

16: bestst ←− st
17: bestroute ←− route
18: end if
19: end for
20: show(bestroute, bestst)
21: end procedure

3.2 Heuristics to BDTP problem
We propose two heuristics based on the metaheuristic GRASP
(Greedy Randomized Adaptive Search Procedures) [10]. GRASP

defines two phases called construction and local search.
In the former, it creates some possible solutions for the prob-
lem using a greedy or a random strategy. In the last phase,
the neighborhoods of these solutions are investigated in or-
der to find the local minimum or maximum, depending on
the problem. The two proposed heuristics, called Incre-
mental and Decremental, are different in the construction
phase, but have the same local search.

3.2.1 Incremental Heuristic
The Incremental Heuristic creates a set Ri with only one
PDP and adds a new PDP each iteration. For every different
Ri, the heuristic performs the local search, which calculates
TBDTP , and saves the best result. These steps are repeated
until the value of TBDTP stop decreasing when Ri increases
or Ri = P . The heuristic chooses the next PDP (pj) to add
to Ri as the PDP pj that has the biggest weight and that
is at least d ≥ 2 × r distant from the other PDPs in Ri. If
there is no PDP with this characteristic, d will be divided
by two. Using this minimal distance, the algorithm avoids
PDPs close to each other in Ri.

The weight wi of a PDP pi is calculated by the equation
wi =

∑z
h=1

hoph
h

, where hoph is the number of sensor nodes
in CG that are connected to pi by edges with weight equal
to h, and z is the biggest weight of the edges that link pi
to sensor nodes in CG. Hence, PDPs on crowded regions
receive the highest weights.

Algorithm 2 presents a pseudo code for the algorithm.

Algorithm 2 Construction Phase: Incremental Heuristic

1: procedure Incremental(N,P,M,B, dspeed)
2: besttime ←− ∞
3: bestroute ←− �
4: bestst ←− �
5: CG ←− CreateCG(N,P )
6: TG ←− CreateTG(P )
7: w ←− CreateWeight(CG,P )
8: Ri ←− �
9: while |Ri| ≤ |P | do
10: Ri ←− Ri ∪NewPDP (w,Ri, TG)
11: TBDTP ←− LSearch(Ri, st, route, CG, TG,B)
12: if TBDTP < besttime then
13: besttime ←− TBDTP

14: bestst ←− st
15: bestroute ←− route
16: else
17: break
18: end if
19: end while
20: show(bestroute, bestst)
21: end procedure

As example, consider the graph CG in Figure 1(B), r = 60m
and the distance between two PDPs is 84 m. In the first loop
iteration, Ri = {p1} since p1 has the biggest weight wp1 =
2.5. In the second loop iteration, Ri = {p1, p5}, because
p2 and p3 are less than d = 2 ∗ r (120 m) far from p1 and
wp5 = 1.5. In the third loop interaction, there is no PDP
further than d = 2×r. Hence, d = d/2 and Ri = {p1, p5, p2},
since p2 has the biggest weight.

3.2.2 Decremental Heuristic
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Figure 2: Example of Decremental Heuristic.

The first step of the Decremental heuristic is to create st ⊆
CG, a graph with the edges representing the small distance
in hops between each sensor node and a PDP. Then, it cre-
ates Ri with all PDPs in st. As above the heuristic starts
a loop. In each loop iteration, the heuristic removes a PDP
from Ri, executes the local search to calculate TBDTP and
saves the best result. The loop stops when Ri becomes
empty or TBDTP increases when the size of Ri decreases.

The heuristic chooses the PDP to be removed from Ri based
on the impact of the removal on the value of Tcollecting.
When a PDP pi is removed from Ri, the edges connecting
it to sensor nodes in st also have to be removed. Hence, the
nodes connected to pi must be connected to another PDP.
Thus, st receives other edges from CG. The impact of the
removal is the difference between the sum of the weights of
the new edges and the sum of the weights of the removed
edges. Since these new edges have weights equal to or bigger
than the removed edges, the value of Tcollecting keeps the
same or increases. However, this removal decreases or keeps
Ttrip, since the drone tour has a smaller number of PDPs to
visit. Algorithm 3 presents a pseudo code of this heuristic.

From the graph CG in Figure 1(B), Figure 2-A presents
the graph st as example, which shows Ri = {p1, p2, p3, p5}.
The first PDP to be removed is p5, which also removes a
edge with weight 1. In order to keep the WSN connected,
this edge is replaced by another edge with the same weight
(Figure 2-B). Hence, the impact of the removal of p5 is 0. In
the second loop iteration, p2 is removed because it provides
impact of removal equal to 1, since the heuristic replaces a
edge with weight 1 by another with weight 2 (Figure 2-C).
The loop stops in the next iteration because some sensor
nodes become unable to send data to a PDP (TBDTP = ∞).

3.3 Local Search
The Local Search phase exchanges each PDP in Ri for one
of its four neighbor in the grid (up, down, left and right)
and returns the smallest TBDTP . It repeats a loop that
chooses the first PDP in Ri, replaces this PDP for one of
its four neighbor, calculates TBDTP and verifies if it is the
smallest. Then, it chooses another neighbor and repeat these
operations. At the end, the algorithm returns the smallest
TBDTP and, by reference, the sequence of PDPs forming the
route (bestroute) that provides the smallest TBDTP and the

Algorithm 3 Construction Phase: Decremental Heuristic

1: procedure Decremental(N,P,M,B, dspeed)
2: besttime ←− ∞
3: bestroute ←− �
4: bestst ←− �
5: CG ←− CreateCG(N,P )
6: TG ←− CreateTG(P )
7: st ←− SpanningTree(P,CG)
8: Ri ←− �
9: for each v ∈ P do
10: if v ∈ st then
11: Ri ←− Ri ∪ v
12: end if
13: end for
14: while |Ri| > 0 do
15: TBDTP ←− LSearch(Ri, st, route, CG, TG,B)
16: if TBDTP < besttime then
17: besttime ←− TBDTP

18: bestst ←− st
19: bestroute ←− route
20: else
21: break
22: end if
23: end while
24: show(bestroute, bestst)
25: end procedure

graph bestst with edges representing the data routes between
each sensor node and the drone over a PDP.

4. SIMULATIONS
We implemented the Force Brute algorithm (Sec. 3.1), the
two proposed heuristic (Secs 3.2.1 and 3.2.2) and three other
algorithms called OneHop, Center and Position00, which
solve the BDTP problem using naive strategies. The One-
Hop provides the best solution considering only one-hop
transmission. It is essentially the Brute Force using CG
without the edges with weights greater than 1. Center as-
sumes only one PDP in the center of the monitored area.
Position00 assumes only one PDP in the position 0,0 of the
monitoring area (i.e., Ttrip = 0).

The experiments are performed in two phases. In the first
phase, we define a small scenario in order to compare the
heuristics, the naive algorithms and the optimal solution.
In the second phase, we consider a larger monitored area
in order to evaluate the performance of these algorithms in
WSN with data routes longer than in the first scenarios. In
all experiments, the main metric is TBDTP . Every point
plotted on the graphs represents the average of 33 simula-
tions using different WSN topologies, which provides 95% of
confidence interval.

The mobile sink is a drone able to fly and hover over the
WSN. It has a radio with the same range of the nodes (r
= 60m). The PDPs form a grid with 84 meters of distance
between two of them. Using this grid, every node will be
less than 60 meter far from a PDP. For simplicity, we do not
consider the time to propagate queries, the drone collects
data only when it is hovering, it moves in constant speed,
there is only one node transmitting data each time and the
network bandwidth is 20 kbps.
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Figure 3: TBDTP Figure 4: Ttrip Figure 5: Tcollecting

4.1 Small Monitored Area
We initially consider a 2D square monitored area with 200
meters of side and 30 sensor nodes uniformly randomly de-
ployed. We compare the proposed heuristics with the opti-
mal solution and with the algorithms that use naive strate-
gies. We increase the amount of data storage in each sensor
node and plot these values in the X axis. In order to ana-
lyze the behavior of TBDTP , we present three graphs. The
first shows TBDTP in its Y axis (Figure 3), the second shows
Ttrip (Figure 4) and the last Tcollecting (Figure 5). The per-
formance of the algorithms in the first graph is analyzed
with the information provided by the other two graphs.

In the first graph (Figure 3) we verify that TBDTP pro-
vided by all algorithms increase when the amount of data
in the sensor nodes increases, as expected. The optimal
solution behavior shows that the algorithms must increase
the number of PDPs in the drone tour and, consequently,
increase Ttrip to avoid the quick growing of Tcollecting and
keep TBDTP as low as possible. When the amount of data
is low, the time necessary to transmit it to the sink is short.
Hence, the best strategy is to keep the drone in the initial
point where Ttrip = 0, such as Position00. When the amount
of data increases, the best strategy is to move the drone in
order to reduce the number of hops in the data routes. This
increases Ttrip, but avoids Tcollecting increasing quickly.

OneHop provides high TBDTP because its Tcollecting is high.
Since this algorithm consider only one-hop transmissions,
the drone tour have to be composed by several PDPs. This
characteristics provides the smallest possible Tcollecting, but
increases Ttrip. Position00 increases TBDTP quickly when
the amount of the data increases, since the data must be
transmitted in multi-hop routes. The result of this algo-
rithm is not plotted in Figure 4 because it always provides
Ttrip = 0. Center algorithm provides average performance if
compared with the other algorithms. This is due the small
monitored area. The drone always does a short trip (141.4
m) and the majority of the sensor nodes can send their data
to drone over only one-hop or two-hop data routes.

Decremental heuristic does not present good performance
in small scenarios, varying TBDTP from 14% to 265% of the
optimal. Its strategy tends to provide drone tours with more
PDPs than the Incremental heuristic and, consequently, larger
values of Ttrip. It can find reasonable solutions only when
the sensor nodes have large amount of data to transmit. In-
cremental provides performance close to the optimal solution

in almost all experiments, varying from 4% (large amount
of data stored in the sensor nodes) to 65% (small amount
of data stored in the sensor nodes) of the optimal solution.
Its strategy of decrease the number of PDPs in the solution
provides small sets of PDPS and, consequently, small val-
ues of Ttrip. These two heuristics slightly increase Ttrip to
reduce the quickly growth of Tcollection.

4.2 Larger Monitored Area
We now consider a 2D square monitored area with 400 me-
ters of side. We do not consider Brute Force and OneHop
algorithms because in larger settings they become too ex-
pensive to be practical. In Figure 6 we increase the amount
of data in each sensor node (X axis) and analyze TBDTP (Y
axis). Center and Position00 increase TBDTP two or three
times faster than the heuristics, respectively, due to their
long data routes. Decremental heuristic presents better per-
formance here than in the first experiments and sometimes
better than the Incremental heuristic. This is due to the
fact that its strategy tends to create drone tours with more
PDPs than the Incremental. This provides good results in
larger monitored area, since more PDPs in the drone tours
decrease the number of hops in the data routes.

Figure 7 presents the result of the experiments in which
we increase the number of sensor nodes from 100 to 250
(X axis) and show TBDTP (Y axis). We consider 60 Kbit
of data in each sensor node and the drone speed is 2 m/s.
The naive algorithms do not have good performance (from
40% to 290% worse than the heuristics) because they create
long data routes to deliver data to sink. The two proposed
heuristics have better performance because they increased
the drone tour to reduce the growth of Tcollecting.

Figure 8 presents experiments to analyze the influence of
the drone’s speed. We varied it from 0.5 m/s to 3 m/s and
plotted in the X axis. We consider 60 Kbit of data in each
sensor node and the number of nodes in the monitored area
is 150. Position00 do not change the sink position, hence
TBDTP does not change. Center improved its performance
because the drone has to move to the center of the moni-
tored area. The proposed heuristics take advantage of the
bigger drone speed. They increase the number of PDPS in
the drone tour to reduce Tcollection. The two heuristics have
similar behavior, except when the drone speed is small, be-
cause Decremental tends to provide tours with more PDPs
and the drone must be fast to keep Ttrip low.
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Figure 6: Increasing the storage data. Figure 7: Increasing number of nodes. Figure 8: Increasing the drone speed.

5. CONCLUSIONS AND FUTURE WORKS
This work analyzed the problem of finding the Best Drone
Tour Plan for data collecting in WSN. We considered a
quadcopter-like UAV as the mobile sink, which is able col-
lect data from all nodes of a disconnected WSN, even in
dangerous or inaccessible regions. However, it has a flying
time limited by its battery. We focused in to find the tour
plan that provides the smallest time for the drone to collect
data from all sensor nodes. In this way, we faced a tradeoff
between the drone trip time and collecting time in order to
find the best overall time.

We defined the Brute Force algorithm to provide the optimal
solution, two heuristics called Incremental and Decremental
and three algorithms (OneHop, Center and Position00) that
use naive strategies. We created simulations to analyze the
performance of the algorithms. Center and Position00 pro-
vided small TBDTP only when the amount of data stored in
the sensor nodes was small. When the amount of data in-
creased, Tcollecting increased quickly because this algorithms
create long data routes to delivery data to sink. The One-
Hop could not find good solutions because it created long
drone tours, which increased Ttrip. The Incremental heuris-
tic had performance close to the optimal solutions in small
monitored areas. In larger monitored area, the Incremental
and Decremental had similar performance. They were bet-
ter than the naive algorithms in practically all experiments
because they found a balance between Ttrip and Tcollecting.

Since the value of Tcollecting is directly proportional to the
number of hops in the data route transmissions, we believe
that when Tcollecting is reduced, the energy consumption in
the WSN is reduced too. The radios in the sensor nodes
are responsible by the consumption of the largest amount of
the energy in WSN. The reduction of the data route lengths
decreases both the time needed to transmit data to sink
and the number of transmissions, saving energy. However,
this analysis will be made in future work. We also intend to
define a protocol to disseminate queries into the WSN and to
forward data onto sink. This protocol and the heuristics to
define the drone tour must work together in order to reduce
the overall time and save energy in the WSN.
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